Scripts

Local Image Features Extraction
— LIFEx —

C. Nioche, F. Orlhac, I. Buvat

LIFEx version 26.1.n,
Last update of document: 2026/01/20

page 7
What is a script?
Part1

9
Introduction

G Serpt e HOW to Mu]ti‘scr'
' €nep,; . e,
Ratzona e anq ;’ra] ing,

1p ts eXe .
a Scry t £ Cutlon
1
at | Ormaﬁon on Se‘]llence Pt fijo
Sa Scripg,
ts
_ General concep
® @
® o
@ . €rf orm
) o 01'1110 . O, Mop .
to create? Wrj SCrthfo MOI'@ Com Ie,\,“re_’marks pel‘atlons Settlng
How to Tite 5 SCripy Fgetting Stareg Scripg
Common .
properties SPfOpertles
@ @
atons o ‘ Ser; Serjeg 0 .
€ S SCI‘lptaut Clies mop, Perathns
operations Vhtax exalnPIeS 0~coInP1e17‘0n W 9 Tation,
Atier, tre,
e =~
(V> 25 10.1)
< <
o
Y .
ROI | [° ® Roy 1.?01 Perag,, P Ation, fro
tions Vatg Or Opel'atio pel‘atIO o fro o - tmenu
opera X y) n om thl'esh 1117 ile Sodiy e SUFemen
Protocol | . .

operations

List of Figures

- 1.1 Rationale and what is a script?

Scripting consists of developing instructions that automate processes in the LIFEx
application. It is commonly employed to streamline repetitive tasks, perform complex
computations, or adapt the user experience for research.

In practice, a script enables execution of all operations and calculations without hu-
man intervention. Multiple scripts may be prepared, arbitrarily named, stored, and
modified as required, as they are plain text files.

The LIFEx scripting procedure generally consists of the following steps:

e Script writing: involves employing the syntax and commands of the scripting lan-
guage to define executable instructions for the application.

* Script debugging and testing consist in executing the script, validating the output,
and correcting any errors to ensure conformity with expected behavior.

1.2 General information

Introduction
¢ Integration and execution: once functional, the script must be executed within the

application, with explicit specifications for timing and mode of execution.

¢ Script maintenance: ongoing adaptation is required to ensure functionality with
evolving application versions, including bug corrections and potential feature ex-
tensions.

1.2 General information about writing a script text file

Introduction: A LIFEx script consists of a plain text file structured as a sequence of
properties, each defined on a separate line.

Properties: Properties are configuration values expressed as key=value pairs. The key
serves as an identifier analogous to a variable, used to access the associated value.

Property example: Example: an application may use the property ”LIFEx.Output.Directory”
to specify the directory in which files are stored.
LIFEx.Output.Directory = /home/user/newDirectory

* key property is “LIFEx.Output.Directory” Upper and lower case are not impor-
tant in the key. This key can also be written : ”“LIFEx.output.directory”

* value property is ”/home/user /newDirectory”

Construction guidelines of property:
¢ warning: Keys must be unique identifiers, with a single definition per line.
¢ Leading spaces preceding a key are disregarded.

* The order of property lines is functionally irrelevant; however, categorization en-
hances readability for users.

¢ File paths must employ the / separator consistently, independent of the operating
system.

¢ Comment lines, indicated by the character #, are excluded from application pars-
ing.

1.3 Script execution sequence

The execution of scripts follows a mandatory sequence, as outlined below:
1. Series loading [mandatory]

— Series operations [optional]

— Series saving [optional]

ROl loading [optional]

A R

— ROI operations [mandatory when ROl is loaded, otherwise optional]

10

v N o

10.
11.
12.

1.4 How to run a script file

Introduction
— ROl saving [mandatory when ROI is loaded, otherwise optional]

Protocol loading [optional]

— MTYV protocol operations [optional]
— Texture protocol operations [optional]
— ROI closing [optional and automatic]
ROI closing [optional and automatic]

Series closing [automatic]

1.4 How to run a script file

To execute a script, the file must be dragged into the patient image loading panel.
Recognition as a valid script requires its size not to exceed 2 MB.

1.5 CanIrun several script files at the same time?

Multiple script files may be executed sequentially and automatically by selecting them
simultaneously and dragging them into the patient image loading panel.

11

1.1 Write a script

Scripts allow chaining image and ROI loading to produce a consolidated results file
in .csv format.

1.2 Script for getting started

Example: the script loads two series (PT0, PT1), each with two associated ROIs (Pa-
tient 0 and Patient 1).

The script may be copied into a text file (e.g., script.txt). File paths must be modified
to reflect the actual directories: ex. directory/subDirectory

15

How to create?

1.3 More complex script

#

#

Common

#

result directory -> mandatory
LIFEx.Output.Directory={directory/subDirectory}

#

#

Patient 0 / Series 0/ ROI 0/ ROI 1

#

loading series -> mandatory
LIFEx.Patient0.SeriesO={directory/subDirectory}/PT0
LIFEx.Patient0.Roi0={directory/subDirectory}/RoiVolume/SORO0.uint16.nii.gz
LIFEx.Patient0.Roi1={directory/subDirectory}/RoiVolume/SOR1.uint16.nii.gz

#

#

Patient 1 / Series 0/ ROI 0 / ROI1

#

loading series -> mandatory
LIFEx.Patient1.SeriesO={directory/subDirectory}/PT1
LIFEx.Patient1.Roi0={directory/subDirectory}/RoiVolume/S1R0.uint16.nii.gz
LIFEx.Patient1.Roi1={directory/subDirectory}/RoiVolume/S1R1.uint16.nii.gz

1.3 More complex script: save anonymous DICOM Se-
ries from DICOM Series

The following provides a complete example of saving an anonymized DICOM series
from an input DICOM series:

#

#

Patient 0 / Series 0

#

loading series -> mandatory
LIFEx.Patient0.SeriesO={directory/subDirectory}/PT0
LIFEx.Patient0.Series0.Operation0=Save anonymous series dcm

#

#

Patient 1/ Series 0

#

loading series -> mandatory
LIFEx.Patient1.SeriesO={directory/subDirectory}/PT1
LIFEx.Patient1.Series0.Operation0=Save anonymous series dcm

16

1.4 Main remarks

1.4 Main remarks relevant to the script writing

* What are the image formats that can be managed using LIFEx scripts?
- Image files may be provided in NIfTI-1 format (.nii or .nii.gz), requiring full
path specification in the script;

— For DICOM images, the root directory (excluding filenames) must be speci-
fied. All files within the directory are then loaded.

?
¢ What are the ROI formats that can be managed using LIFEx scripts? How to create?

- ROI formats supported include NIfTI-1 and RTStruct. In both, the full file
path must be provided; for RTStruct, all ROIs are imported without excep-
tion.

¢ Syntax of all pathways of files in LIFEx scripts:

— File paths must exclude accents and spaces.
— Path syntax is not strictly dependent on the operating system.

+ Windows paths follow Unit:/Directory/File.extension
or Unit:/Your Directory/ for series of DICOM images
example C:/Home/Users1/Filel

+ Linux paths: /Your Directory/Your File.extension
+ macOS paths: /Your Directory/Your File.extension

1.5 Perform operations

Intermediate ROI operations may be executed after Series and ROI loading but prior
to feature extraction and results recording:

Main syntax of one operation: The operation syntax is defined as:
{key}.Operation0=nameOp0,arg1,arg2,...,argn

with "nameOp0" is the title of the button of the ROI action to be performed, arg1 the
first argument, arg2 the second argument, ...

Main syntax of many operations to the same Series or ROI: so each uses the result of
the previous.
{key}.Operation0=nameOp0,arg1,arg2,...,argnjnameOp1,arg1,arg2,...,argn

with "nameOp0" is the first operation, "nameOp1" is the second operation.
Operations are executed in the order in which they are written (left to right).
Here’s an example:
{key}.Operation0=SpatialResampling,2,2,2| Texture,false,false,false,1,3D,Absolute,0.314,192,0,60

17

How to create?

1.6 Perform common setting

Explanation:
¢ series 0 is selected to start this operation 0;
¢ resample rescaling is realized on series 0

¢ texture protocol is realized on resample rescaling series result.

Order operations between lines: If you have more than one operation to perform you
can describe the actions with an order given by the key_operationN:

{key}.Operation0=...

{key}.Operationi=...

{key}.Operation2=...

1.6 Perform common setting
LIFEx.Password: enables access to experimental or unreleased functions, facilitating controlled

feature release.
LIFEx.Password="***

LIFEx.GuiUpdate: controls whether the GUI is displayed. Disabling it (false) can accelerate script
execution, particularly in server environments (LIFEx>=7.4.1) [true (default) || false]

LIFEx.GuiUpdate=false||true

LIFEx.SeriesRoiGuiUpdate: defines whether series and ROl images are rendered during script
execution. Disabling (false) accelerates computation (LIFEx>=7.5.6) [true (default) || false]

LIFEx.SeriesRoiGuiUpdate=false||true

LIFEx.MessagesGuiUpdate: determines whether textual messages are displayed. Setting to
false suppresses output and increases performance (LIFEx>=7.5.6) [true (default) || false]

LIFEx.MessagesGuiUpdate=false||true

18

21 US Properties
add US Properties:

For ultrasound DICOM data, disabling the red, green, and blue channels enables acquisition of the
averaged signal alone (all channels are active by default).

The following properties may be added to deactivate individual RGB channels:
LIFEx.PropertiesSeriesUS.haveRedChannel=false
LIFEx.PropertiesSeriesUS.haveGreenChannel=false
LIFEx.PropertiesSeriesUS.haveBlueChannel=false

19

3.1 Syntax examples

e Store series in anonymized DICOM format
LIFEx.Patient0.Series0.Operation0=Save anonymous dcm

e Standardize series units to SUVbw:
LIFEx.Patient0.Series0.Operation0=SUVbw

* Apply 2x2x2 resampling prior to saving in NIfTI format:
LIFEx.Patient0.Series0.Operation0=SpatialResampling,2,2,2|save nii uint16

e Export results in anonymized NIfTI format:
LIFEx.Patient0.Series0.Operation0=Save Anonymous nii uint16

¢ Define the output directory for series export:
LIFEx.Output.Directory={directory/subDirectory/}

21

3.2 Script auto-completion with patient tree (v>=25.10.1)

3.2) Script auto-completion with patient tree (v>=25.10.1)

3.2.1) Script auto-completion with one series (v>=25.10.1)

It is possible to let LIFEx automatically complete the file tree (Series and ROIs), as well as the
operations (on Series and ROIs). LIFEx will generate a basic script, which must include at least the
following keys:

e LIFEx.Input.Directory={directory/subDirectory/}
¢ LIFEx.Series0.Operation0={Series operation}

¢ LIFEx.R0i0.Operation0={ROI operation}
Note that the "PatientN" level has disappeared, since it will be recreated during this procedure.

Neither file names nor directory names matter. The application automatically identifies each file as
either an image (Series) or a segmentation (ROI).

The directory structure does not need to follow a strict format. Automatic completion will work as long
as the application can detect images and ROls in the sub-tree. Please avoid placing multiple image
series in the same patient folder, and ensure that each ROl is located close to its corresponding image.

Series opera-

tions In this case, LIFEx will start by scanning the "Input Directory" and all its subfolders in order to build a

detailed script, including the construction of patient0, patientt, ..., patientN. This new script file will be
saved with an additional extension, so as not to overwrite the original script file.

Automatic construction has some limitations:
¢ only one series (series0) can be included
¢ only one operation can be applied to Series0
¢ only one operation can be applied to each ROI

Example of basic script
LIFEx.Input.Directory=/home/example/input
LIFEx.Series0.OperationO=spatialresampling,2,2,2|Texture,false,false,false,1,3D,Absolute,0.3125,192,0,60
LIFEx.Input.Directory=/home/example/output

File tree example (/home/example):

/home/example/

| PATO/
SERIES
L,series_fileo.nii.gz
ROI
t:roio_file.nii.gz

roil_file.nii.gz
| PAT1/

SERIES
series_fileO.dcm

series_filel.dcm
series_file2.dcm
ROI

t:roio_file.nii.gz
roil_file.nii.gz

22

3.2 Script auto-completion with patient tree (v>=25.10.1)

| PAT2/
series_file0O.nii.gz
roi0_file.nii.gz
roil_file.nii.gz
| PAT3/
L TMpo/
series_file0O.nii.gz

roi0_file.nii.gz
roil_file.nii.gz

Auto-completion will write a new content script as follows:

lifex.patient0.roi0=/home/example/PAT0/ROI/
lifex.patient0.seriesO=/home/example/PATO/SERIES/series_file0.nii.gz
lifex.patient0.series0.operationO=spatialresampling,2,2,2| Texture,false,false,false,1,3D,Absolute,0.3125,192,0,60

lifex.patient1.roi0=/home/example/PAT1/ROl/
lifex.patient1.seriesO=/home/example/PAT1/SERIES/

lifex.patient1.series0.operation0=spatialresampling,2,2,2| Texture,false,false,false,1,3D,Absolute,0.3125,192,0,60 .
Series opera-

lifex.patient2.roi0=/home/example/PAT2/roi0_file.nii.gz tions

lifex.patient2.roi1=/home/example/PAT2/roi1_file.nii.gz
lifex.patient2.seriesO=/home/example/PAT2/series_{file0.nii.gz
lifex.patient2.series0.operationO=spatialresampling,2,2,2| Texture,false,false,false,1,3D,Absolute,0.3125,192,0,60

lifex.patient3.roi0=/home/example/PAT3/TMPO0/roi0_file.nii.gz
lifex.patient3.roi1=/home/example/PAT3/TMPO0/roii1_file.nii.gz
lifex.patient3.series0=/home/example/PAT3/TMPO0/series_file0.nii.gz
lifex.patient3.series0.operationO=spatialresampling,2,2,2| Texture,false,false,false,1,3D,Absolute,0.3125,192,0,60

Windows: On Windows, the ’:’ character may appear escaped with a backslash (\:). This does not
affect the script when it is read back. Otherwise, all \ characters are properly converted to /

3.2.2) Script auto-completion with several series (v>=25.10.3)

When working with multiple series, the script can specify which reference series should be used,
determining the loading order of the series. It is also possible to deselect one series and select another
to run the same script on different datasets. Here are some examples to explain this functionality.

Example 1

Two patients, each with two series and two ROls. In this case, both series are loaded simultaneously,
and one serves as the reference (based on the alphabetical order of the directories). This may not
always be the intended behavior (see Examples 2 and 3).

File tree example (/home/example):
/home/example/
PATO/
| sEr1ESO
L,serieso_file.nii.gz

23

3.2 Script auto-completion with patient tree (v>=25.10.1)

SERIES1
seriesl_file.nii.gz
ROI
t:roio_file.nii.gz
roil_file.nii.gz
| PAT1/
| SERIESO

series(O_fileO.dcm
seriesO_filel.dcm
series(O_file2.dcm

| SERIES1
seriesl_fileO.dcm
seriesl_filel.dcm
seriesl_file2.dcm
| ROI

troio_file.nii.gz
roil_file.nii.gz

Original script as follows:

LIFEx.Input.Directory=/home/example/
LIFEx.Output.Directory=/home/example/results

kokk ko kkkkkkkkkkkkkk

LIFEx.Series0.RelativeDirectory=SERIESO
LIFEx.Series0.Selected=true

LIFEx.Series0.Operation0=Series0Operation0Content
LIFEx.Series0.Operation1=Series0Operation1Content
LIFEx.Series0.Operation2=Series0Operation2Content

LIFEx.Roi0.Operation0=R0i00peration0Content
LIFEx.Roi0.Operation1=Roi00peration1Content
LIFEx.Roi0.Operation2=Roi0Operation2Content

kokk kK kkkkkkkkkkkkkk

LIFEx.Series1.RelativeDirectory=SERIES1
LIFEx.Series1.Selected=true

LIFEx.Series1.0Operation0=Series10Operation0Content
LIFEx.Series1.Operation1=Series1Operation1Content
LIFEx.Series1.Operation2=Series10Operation2Content
LIFEx.Roi1.Operation0=Roi1Operation0Content

LIFEx.Roi1.Operation1=Roi1Operation1Content
LIFEx.Roi1.Operation2=Roi1Operation2Content

Auto-completion will write a new content script as follows:

LIFEx.Input.Directory=/home/example/

24

3.2 Script auto-completion with patient tree (v>=25.10.1)

LIFEx.Output.Directory=/home/example/results

Fok kK kkkkkkkkkhhkkk

LIFEx.Patient0.Series0.Operation0=Series0Operation0Content
LIFEx.Patient0.Series0.Operation1=SeriesOOperation1Content
LIFEx.Patient0.Series0.Operation2=SeriesOOperation2Content
LIFEx.Patient0.Series1.Operation0=Series1Operation0Content
LIFEx.Patient0.Series1.Operation1=Series1Operation1Content
LIFEx.Patient0.Series1.Operation2=Series10peration2Content
LIFEx.Patient0.Roi0.Operation0=Roi0Operation0Content
LIFEx.Patient0.Roi0.Operation1=Roi0Operation1Content
LIFEx.Patient0.Roi0.Operation2=Roi0Operation2Content
LIFEx.Patient0.Roi1.Operation0=Roi1Operation0Content
LIFEx.Patient0.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient0.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient0.Roi0=PAT0/ROI/roi0_file.nii.gz
LIFEx.Patient0.Roi1=PAT0/ROl/roi1_file.nii.gz
LIFEx.Patient0.Series0=PATO/SERIESO0/series0_file.nii.gz
LIFEx.Patient0.Series1=PATO/SERIES1/series1_file.nii.gz

ok ok ok ke ek ke ok ok ok ok ok ko ok

LIFEx.Patient1.Series0.Operation0=Series0Operation0Content
LIFEx.Patient1.Series0.Operation1=SeriesOOperation1Content
LIFEx.Patient1.Series0.Operation2=SeriesOOperation2Content
LIFEx.Patient1.Series1.Operation0=Series10peration0Content
LIFEx.Patient1.Series1.Operation1=Series10peration1Content
LIFEx.Patient1.Series1.Operation2=Series10peration2Content
LIFEx.Patient1.Roi0.Operation0=Roi0Operation0Content
LIFEx.Patient1.Roi0.Operation1=Roi0Operation1Content
LIFEx.Patient1.Roi0.Operation2=Roi0Operation2Content
LIFEx.Patient1.Roi1.Operation0=Roi1Operation0Content
LIFEx.Patient1.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient1.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient1.Roi0=PAT 1/ROI/roi0_file.nii.gz
LIFEx.Patient1.Roi1=PAT1/ROl/roi1_file.nii.gz
LIFEx.Patient1.Series0=PAT1/SERIES0/
LIFEx.Patient1.Series1=PAT1/SERIES1/

Example 2

Two patients, each with two series and two ROIls. Note that in this case, only one of the two series

will be loaded - this introduces the concept of a selected series.

File tree example (Tree structure identical to that of Example 1) (/home/example):

/home/example/

| PATO/

SERIESO

L seriesO_file.nii.gz

SERIES1
seriesl_file.nii.gz

ROI

t roi0_file.nii.gz
roil_file.nii.gz

| PAT1/

25

Series opera-
tions

3.2 Script auto-completion with patient tree (v>=25.10.1)

| SERIESO
series(O_fileO.dcm
series(O_filel.dcm
series(O_file2.dcm

| SERIES1
seriesl_fileO.dcm
seriesl_filel.dcm
seriesl_file2.dcm
| ROI

t:roio_file.nii.gz
roil_file.nii.gz

Original script as follows:

LIFEx.Input.Directory=/home/example/
LIFEx.Output.Directory=/home/example/results
*kkkhkhkkkkkkkkkhhkkx
LIFEx.Series0.RelativeDirectory=SERIESO

Series opera- ,
LIFEx.Series0.Selected=true

tions

LIFEx.Series0.Operation0=Series0Operation0Content
LIFEx.Series0.Operation1=Series0Operation1Content
LIFEx.Series0.Operation2=Series0Operation2Content

LIFEx.Roi0.Operation0=R0i00peration0Content
LIFEx.Roi0.Operation1=Ro0i00peration1Content
LIFEx.Roi0.Operation2=Roi0Operation2Content
hkkkkhkkhkkhhkhkkhkhkhkk
LIFEx.Series1.RelativeDirectory=SERIES1
LIFEx.Series1.Selected=false

LIFEx.Series1.Operation0=Series1Operation0Content
LIFEx.Series1.Operation1=Series1Operation1Content
LIFEx.Series1.Operation2=Series1Operation2Content

LIFEx.Roi1.Operation0=Roi1Operation0Content
LIFEx.Roi1.Operation1=Roi1Operation1Content
LIFEx.Roi1.Operation2=Roi1Operation2Content

Auto-completion will write a new content script as follows:

LIFEx.Input.Directory=/home/example/
LIFEx.Output.Directory=/home/example/results

Jf HERRR R
LIFEx.Patient0.Series0.Operation0=Series0Operation0Content
LIFEx.Patient0.Series0.Operation1=Series0Operation1Content
LIFEx.Patient0.Series0.Operation2=Series0Operation2Content
LIFEx.Patient0.Roi0.Operation0=R0i0Operation0Content
LIFEx.Patient0.Roi0.Operation1=Roi0Operation1Content
LIFEx.Patient0.Roi0.Operation2=R0i0Operation2Content
LIFEx.Patient0.Roi1.Operation0=Roi1Operation0Content

26

LIFEx.Patient0.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient0.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient0.Roi0=PAT0/ROI/roi0_file.nii.gz
LIFEx.Patient0.Roi1=PAT0/ROl/roi1_file.nii.gz
LIFEx.Patient0.Series0O=PAT0/SERIESO0/series0_file.nii.gz

Kok kK kkkkkkkkhhhhkk

LIFEx.Patient1.Series0.Operation0=Series1Operation0Content
LIFEx.Patient1.Series0.Operation1=Series1Operation1Content
LIFEx.Patient1.Series0.Operation2=Series10peration2Content
LIFEx.Patient1.Roi0.Operation0=Roi0Operation0Content
LIFEx.Patient1.Roi0.Operation1=Roi0Operation1Content
LIFEx.Patient1.Roi0.Operation2=Roi0Operation2Content
LIFEx.Patient1.Roi1.Operation0=Roi1Operation0Content
LIFEx.Patient1.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient1.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient1.Roi0=PAT 1/ROI/roi0_file.nii.gz
LIFEx.Patient1.Roi1=PAT1/ROl/roi1_file.nii.gz

3.2 Script auto-completion with patient tree (v>=25.10.1)

LIFEx.Patient1.Series0O=PAT1/SERIES0/

Example 3

Two patients, each with two series and two ROls. Note that in this case, only one of the two series
will be loaded - this introduces the concept of a selected series. The selection is inverted compared to

Example 2.

In this last example (the most complicated) we make you understand that the indices of the series
declared in the original script can be modified in the automatically reconstructed script. Indeed, it is
impossible for the application to have a series index "Series1" when "Series0" does not exist. This
would be the case here, because Series0 is selected=false. In this case, the automatic reconstruction
allows itself to reindex the indices so that it always starts at 0. This indicates that the correspondence
with the original script must be done with caution and knowing this.

File tree example (Tree structure identical to that of Example 2) (/home/example):

/home/example/
| PATO/
SERIESO

SERIES1

ROI

| PAT1/
| SERIESO

| SERIES1

| ROI

roiO_file.nii.
roil_file.nii.

seriesO_fileO.
seriesO_filel.
seriesO_file2.

seriesl_fileO.
seriesl_filel.
seriesl_file2.

seriesl_ file.nii.

gz
gz

dcm
dcm
dcm

dcm
dcm
dcm

L,serieso_file.nii.gz

gz

27

Series opera-
tions

3.2 Script auto-completion with patient tree (v>=25.10.1)
t roi0_file.nii.gz
roil_file.nii.gz

COriginal script as follows:

LIFEx.Input.Directory=/home/example/
LIFEx.Output.Directory=/home/example/results
*kkkkkkkkkkkkkhkkkkk
LIFEx.Series0.RelativeDirectory=SERIESO0
LIFEx.Series0.Selected=false

LIFEx.Series0.Operation0=Series0Operation0Content
LIFEx.Series0.Operation1=Series0Operation1Content
LIFEx.Series0.Operation2=Series0Operation2Content

LIFEx.Roi0.Operation0=Ro0i00peration0Content
LIFEx.Roi0.Operation1=Roi00peration1Content
LIFEx.Roi0.Operation2=R0i00peration2Content
*kkkkhkkkkkkkkkhhhkx
Series opera- LIFEx.Series1.RelativeDirectory=SERIES1
e LIFEx.Series1.Selected=true
LIFEx.Series1.0Operation0=Series10Operation0Content
LIFEx.Series1.Operation1=Series10peration1Content
LIFEx.Series1.Operation2=Series1Operation2Content

LIFEx.Roi1.Operation0=Roi1Operation0Content
LIFEx.Roi1.Operation1=Roi1Operation1Content
LIFEx.Roi1.Operation2=Roi1Operation2Content

Auto-completion will write a new content script as follows:

LIFEx.Input.Directory=/home/example/
LIFEx.Output.Directory=/home/example/results

J R RS R
LIFEx.Patient0.Series0.Operation0=Series10peration0Content
LIFEx.Patient0.Series0.Operation1=Series10peration1Content
LIFEx.Patient0.Series0.Operation2=Series10peration2Content
LIFEx.Patient0.Roi0.Operation0=Roi00Operation0Content
LIFEx.Patient0.Roi0.Operation1=R0i0Operation1Content
LIFEx.Patient0.Roi0.Operation2=R0i0Operation2Content
LIFEx.Patient0.Roi1.Operation0=Roi1Operation0Content
LIFEx.Patient0.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient0.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient0.R0oi0=PAT0/ROI/roi0_file.nii.gz
LIFEx.Patient0.Roi1=PAT0/ROI/roi1_file.nii.gz
LIFEx.Patient0.Series0O=PATO/SERIES1/series1_file.nii.gz
-
LIFEx.Patient1.Series0.Operation0=Series10peration0Content
LIFEx.Patient1.Series0.Operation1=Series1O0peration1Content
LIFEx.Patient1.Series0.Operation2=Series10Operation2Content
LIFEx.Patient1.Roi0.Operation0=R0i0Operation0Content
LIFEx.Patient1.Roi0.Operation1=R0i0Operation1Content

28

3.3 Series common operations

LIFEx.Patient1.Roi0.Operation2=Roi0Operation2Content
LIFEx.Patient1.Roi1.Operation0=Roi1Operation0Content
LIFEx.Patient1.Roi1.Operation1=Roi1Operation1Content
LIFEx.Patient1.Roi1.Operation2=Roi1Operation2Content
LIFEx.Patient1.Roi0=PAT1/ROl/roi0_file.nii.gz
LIFEx.Patient1.Roi1=PAT 1/ROl/roi1_file.nii.gz
LIFEx.Patient1.Series0=PAT1/SERIES1/

3.3 Series common operations

Define a common output directory for the saving of all series:
LIFEx.Output.Directory={directory/subDirectory/}

Define a global operation list to be applied across all loaded series:
LIFEx.OperationO=list of operations to be performed on all series
Optionally open the results directory at script completion (default = false):
LIFEx.Output.Directory.OpenAtTheEnd=true

3.4 Series operations

Export anonymized series in DICOM format, provided original input is DICOM:
LIFEx.Patient0.Series0.Operation0=Save anonymous dcm

Export series in DICOM format, provided original input is DICOM:
LIFEx.Patient0.Series0.Operation0O=Save decm

Export series in NRRD format:
LIFEx.Patient0.Series0.Operation0O=Save nrrd

Export series in NIfTI format (float 32 bits):
LIFEx.Patient0.Series0.Operation0=Save nii float32

Export anonymized series in NIfTI format (float 32 bits):
LIFEx.Patient0.Series0.Operation0=Save Anonymous nii float32

Export series in NIfTI format (uint 16 bits) (2 posibilities):
LIFEx.Patient0.Series0.Operation0=Save nii uint16
LIFEx.Patient0.Series0.Operation0=Save nii

Export anonymized series in NIfTI format (uint 16 bits):
LIFEx.Patient0.Series0.Operation0=Save Anonymous nii uint16

Export series in ECAT format: (.v):
LIFEx.Patient0.Series0.Operation0=Save ecat

Export MIP 3D Plans: Coronal, Sagittal, Axial in nifti format (float32):
LIFEx.Patient0.Series0.Operation0=Save MIP 3D Plans

Export dynamic representation as video: in video format (mp4):
LIFEx.Patient0.Series0.Operation0=Save mp4

Change output directory of Series saving:
LIFEx.Patient0.Series0.Operation0.Output.Directory={directory/subDirectory/}

Unit of Y axis of series, choose between: kBg/mL || SUVbw || SUVIbm || SUVibw || SUVbsa ||
Cpx/vx || Gy/vx || %/vx || #class || # k Pa||HU || T || mL/100g || mL/100g/min || sec || RC (.###)
[| min-1|| Proba || # || #.# || #.4 || #.4## || #.#HH

LIFEx.Patient0.Series0.Operation0=SUVbw

Crop3D series. Coordinates are expressed in voxels (on referenced series). You can obtain
these two crop coordinates in the interface via the Series/Crop menu and the following fields:
"start corner" and "end corner".
LIFEx.Patient0.Series0.Operation0=Crop3D,coorX1,coorY1,coorZi,coorX2,coorY2,coorZ2

29

Series opera-
tions

Series opera-
tions

3.4 Series operations

e Crop2D series. Coordinates are expressed in voxels (on referenced series). You can obtain

these two crop coordinates in the interface via the Series/Crop menu and the following fields:
"start corner" and "end corner".
LIFEx.Patient0.Series0.Operation0=Crop2D,coorX1,coorY1,coorX2,coorY2

Apply spatial resampling with specified voxel dimensions "SpatialResampling":
LIFEx.Patient0.Series0.OperationO=SpatialResampling,xSpacing,ySpacing,zSpacing
Example with spacing (x=3 mm, y=3mm, z=3mm):
LIFEx.Patient0.Series0.Operation0=SpatialResampling,3.0,3.0,3.0

Perform linear combination of two series with user-defined coefficients:
LIFEx.Patient0.Series0.Operation0=SeriesOperator,CoefA,SeriesA,OperatorName,CoefB,SeriesB
OperatorName between: ADDITION || SUBTRACT || AVERAGE || DIVIDE || MULTIPLY

[| MAXIMUM || MINIMUM || AFFINE_TRANSFORM

Example of S3 = 0.6 * S1 + 0.4 * S2 then save S3 series result:

LIFEx.Patient0.Series0=S0file.nii.gz

LIFEx.Patient0.Series1=S1file.nii.gz
LIFEx.Patient0.Series0.Operation0=SeriesOperator,0.6,S1,ADDITION,0.4,S2|SaveNii

Apply LaplacienOfGaussian spatial filtering with defined kernel size and dimensionality:
LIFEx.Patient0.Series0.OperationO=LaplacienOfGaussianFilter,SigmaX,SigmaY,SigmaZz,
CalculationDimension,WholeBody,PaddingMethod

Example with Sigma (x=2 mm, y=2mm, z=2mm), 3d calculation dimension, wholebody enable
and reflect padding method:
LIFEx.Patient0.Series0.OperationO=LaplacienOfGaussianFilter,2,2,2,3d,true,reflect

- float value Sigma is the FWHM/2 of kernels size in millimeter.

- 3d calculation dimension is between [2d, 3d]

- wholebody is always true in script

- padding method is between [reflect, periodic, edge, zero]

Apply Gaussian spatial filtering with defined kernel size and dimensionality:
LIFEx.Patient0.Series0.Operation0O=GaussianFilter,SigmaX,SigmaY,SigmaZ,
CalculationDimension,WholeBody,PaddingMethod

Example with Sigma (x=2 mm, y=2mm, z=2mm), 3d calculation dimension, wholebody enable
and reflect padding method:
LIFEx.Patient0.Series0.Operation0=GaussianFilter,2,2,2,3d,true,reflect

- float value Sigma is the FWHM/2 of kernels size in millimeter.

- 3d calculation dimension is between [2d, 3d]

- wholebody is always true in script

- padding method is between [reflect, periodic, edge, zero]

Apply spatial mean filtering with defined kernel size and dimensionality:
LIFEx.Patient0.Series0.OperationO=MeanFilter,kernelDiameterSizeVx,
CalculationDimension,WholeBody,PaddingMethod

Example with kernelDiameterSizeVx 3 vx, 3d calculation dimension, wholebody enable and re-
flect padding method:
LIFEx.Patient0.Series0.Operation0O=MeanFilter,3,3d,true,reflect

- float value sigma is the FWHM/2 of kernels size in millimeter.

- integer value diameter kernel size between [3, 5, 7, 9, 11, 13, 15]

- 3d calculation dimension is between [2d, 3d]

- wholebody is always true in script

- padding method is between [reflect, periodic, edge, zero]

Apply wavelet-based decomposition filter with user-defined parameters:
LIFEx.Patient0.Series0.Operation0O=WaveletsFilter,TransformAlongZAxis,TransformAlongYXAXxis,
FamilyName,Order,Level,PaddingMethod

30

3.4 Series operations

Example with TransformAlongZAxis enable, TransformAlongYXAxis enable, coiflet familyName,
1 order and 1 level
LIFEx.Patient0.Series0.Operation0O=WaveletsFilter,true,true,coiflets,1,1,reflect

- transformAlongZAxis is between [true, false]

- transformAlongYXAxis is always true

- familyName is between [coiflets, biorthogonal, daubechies, haar, reverse biorthogonal,
symlets]

- daubechies order is between [1, ..., 38]

- symlets order is between [2, ..., 20]

- coiflets order is between [1, ..., 17]

- reverse/biorthogonal order is between [11, 13, 15, 22, 24, 26, 28, 31, 33, 35, 37, 39, 44, 55,
68]

- haar order is equal [1]

- Levelis equal [1]

- padding method is between [reflect, periodic, edge, zero]

Apply Laws’ texture energy filters with selected kernel family:
LIFEx.Patient0.Series0.OperationO=LawsFilter,KernelSize,WholeBody,PaddindMethod
Example with (I3, 13, I3 Kernel size, WholeBody enable, and reflect Paddind method
LIFEx.Patient0.Series0.OperationO=LawsFilter,13,13,I3,true,reflect

- kernel size is between [I3, 15, €3, €5, s3, s5, w5, r5]

with I3: level (1, 2, 1)

with 15: level (1, 4, 6, 4, 1)

with €3: edge (-1, 0, 1)

with e5: edge (-1,-2,0, 2, 1)

with s3: spot (-1, 2, -1)

with s5: spot (-1, 0, 2, 0, -1)

with w5: wave (-1, 2,0, -2, 1)

with r5: ripple (1, -4, 6, -4, 1)

- wholebody is always true in script

- padding method is between [reflect, periodic, edge, zero]

31

&1 Syntax examples

e Example: apply an absolute threshold between 2.5 and 50:
LIFEx.Patient0.Roi0.Operation0=n,2.5,50

e Example: absolute thresholding (2.5-50) followed by ROI export in NIfTI format:
LIFEx.Patient0.R0i0.Operation0=n,2.5,50|Save nii

e Example: subtraction of two loaded ROls, followed by saving of the resulting ROI:
LIFEx.Patient0.Roi0.Operation0=SelectedAllIRoi|Subtract|SelectedAllRoi|Save nii

42 ROI operations from threshold menu

¢ Apply absolute thresholding (min-max range):
LIFEx.Patient0.R0i0.Operation0=n,ValueOfMinThreshold,ValueOfMaxThreshold

¢ Apply relative thresholding based on percentage:
LIFEx.Patient0.R0i0.Operation0=n%,ValueOfPercentThreshold

33

4.3 ROI operations from file/edit menu

Fixed 40% relative threshold:
LIFEx.Patient0.R0i0.Operation0=40%

Fixed 70% relative threshold:
LIFEx.Patient0.R0i0.Operation0=70%

Apply peak-based thresholding:
LIFEx.Patient0.Ro0i0.Operation0=Peak

Apply Nestle method with specified threshold:
LIFEx.Patient0.Roi0.Operation0O=Nestle,ValueOfThreshold

Apply PERCIST thresholding (requires preloaded Liver ROI):
LIFEx.Patient0.R0i0.Operation0=PERCIST

W43) ROI operations from file/edit menu

Retain a single ROI from the loaded set
LIFEx.Patient0.Ro0i0.Operation0=KeepOne

Divide ROI into separate components
LIFEx.Patient0.R0i0.Operation0=Split

Union -> Union of all ROls
LIFEx.Patient0.Roi0.Operation0=SelectedAlIRoi|Union

Intersection -> Intersection of ROIs
LIFEx.Patient0.Roi0.Operation0=SelectedAllRoi|Intersection

Subtract -> Subtraction (with only 2 ROls loaded)
LIFEx.Patient0.Roi0.Operation0=SelectedAllIRoi|Subtract

Morphological dilation with kernel size n voxels
LIFEx.Patient0.Roi0.OperationO=Dilate,n
- n is the number of voxels of length of kernel (vx)

Morphological erosion with kernel size n voxels

LIFEx.Patient0.R0i0.Operation0O=Erode,n

- n is the number of voxels of length of kernel (vx)

Ring ROI operation generates a hollow structure of thickness n mm (half applied as lateral thick-
ness). Example: Ring, 10 produces a 10 mm kernel with 5 mm lateral extent.

LIFEx.Patient0.Roi0.Operation0=Ring,n
Example with 10 millimeters (= 5 millimeters of lateral extent): LIFEx.Patient0.Roi0.Operation0=Ring,10

Select all loaded ROIs
LIFEx.Patient0.Roi0.Operation0=SelectedAlIRoi

Export ROI as NIfTI file:
LIFEx.Patient0.Rio0.Operation0=Save nii

Export ROl as DICOM file:
LIFEx.Patient0.R0i0.Operation0=Save dcm

Export ROl as CSV (comma-separated values):
LIFEx.Patient0.R0i0.Operation0=Save csv

Export ROl in Turku PET Centre format (.dft):
LIFEx.Patient0.R0i0.Operation0=Save dft

Placeholder for Recovery Coefficient export (not implemented):
LIFEx.Patient0.R0i0.Operation0=Save dftrc

34

4.4 ROI operations from measure menu

e Export ROl as NRRD (Pmod-compatible):
LIFEx.Patient0.R0i0.Operation0=Save nrrd

¢ Define output directory for ROI saving:
LIFEx.Patient0.R0i0.Operation0.Output.Directory={directory/subDirectory/}

¢ Define a global output directory for saving all ROls:
LIFEx.Output.Directory={directory/subDirectory/}

43 Rroi operations from measure menu

e Compare ROI operation generates a comparaison result file. The comparison is carried out two
by two, on all the ROls loaded in the application.
LIFEx.Patient0.Roi0.Operation0O=Compare

I4&5) ROI operations from sort menu

e Quarter division for labeling ROI: LIFEx.Patient0.Roi0.Operation0="Quarter Division"
Complex example: LIFEx.Patient0.Roi0.Operation0O=Quarter Division|Selected All Roi|Save
nii

35

W5 Protocol TEXTURE operations
BN Rationale

For large cohorts or multiple ROls per patient, scripting enables automated extraction of indices
(SUV, volume, histogram-based, textural) without user intervention. Prior ROI preparation is required.
Scripts may be executed repeatedly with varied parameter sets to assess their influence on extracted
features.

Example: For 100 patients each with 10 ROls, the nbGreyLevels parameter may be varied (64, 128,
256) to evaluate its impact, requiring three separate script executions., see the "Can | run several script
files at once?" p.11.

Another example: You have 10 ROI per patient and a set of 100 patients to be processed. You are
interested in studying the impact of the Spatial Resampling parameter on the 10100 ROI, by setting
this parameter to 2x2x2 mm and to 4x4x4 mm. You can write and run a first script by setting the
SpatialResampling parameter to 2x2x2 mm. Then duplicate the script and change 2x2x2 mm by
4x4x4 mm to produce a second script to be run. Running the two scripts will calculate all indices for
you automatically and store them in csv files. Setting the spatial resampling parameter to 2x2x2 mm in
the script file can be done as in series operations chapter.

37

5.1 Protocol TEXTURE operations

A preliminary ROI verification (CheckTex) ensures suitability for texture analysis, avoiding time-
consuming invalid computations. This will check whether the ROI includes a single cluster and contain
a number of voxels greater than that required for consistent textural feature calculation. If one of these
two conditions is not met, a warning message will be displayed.

All these lines contain the series paths, ROIs and parameters needed to redo the texture analy-
sis you've just designed in the user interface. You can then drag this file into the application’s se-
ries/images/scripts reading area to run the whole procedure. You can also use this file as a starting
point for modifying certain parameters in order to re-execute a new analysis under the same conditions.

52D Explanation of field contents

Check: Setting Check=true enables a fast preliminary computation restricted to simple features
(voxel count, min, mean, max).

KeepTheLargestCluster: The KeepThelLargestCluster option retains only the largest connected
component within an ROI, discarding smaller clusters.

IsEnabledRoiUnion: merges all segmented regions into a single ROI prior to texture calculation.

BinSize and NbGreyLevels (how set the quantization): Grey-level discretization can be
parameterized via BinSize or NbGreyLevels, with automatic computation of the unset parameter.

For instance:
if BinSize = 0 then BinSize = (boundMax — boundMin) / (nbGreyLevels — 1)
if nbGreyLevels = 0 then nbGreyLevels = ((boundMax — boundMin) /binSize) + 1
if BinSize = 0 and nbGreyLevels = 0 then nbGreyLevels = 64 by default
boundMin and bounsMax are the minimum and maximum values in the processed ROI.

Discretization has been set with:

originalValue—bound Min)) +1

discretizedValue = floor((nbGreyLevels * =5 axr e

e Have the minimum and maximum bounds of a whole cohort of patients in a script
(without texture calculation)

It is easy to find the BoundMax of all the ROI of all your patients in order to put this bound in the final
script. This has to be done in 2 steps with exactly the same script (by changing one parameter). Here
is the process.

e step 1: change this value to "true" on the Check key. It allows calculating the min, max bounds
of all the ROl in a single pass of the script.

e step 2: run the script a first time to have only bound results; You then retrieve the max of the
max of all the ROls and correct the value of the MaxBound key in the script file

¢ step 3: change to false value of Check key in the script file
e step 4: run the script a second time to have all feature results

IEABD Automatic texture script creation

Since version 7.6.0, LIFEx is capable of automatically generating texture scripts based on GUI-
defined protocols. To do so, follow the standard texture protocol in the interface. However, instead
of executing the texture calculations by pressing the run button, you can generate the corresponding
script by pressing the script button (to the left of the run button).

38

5.1 Protocol TEXTURE operations

A text file will open with the contents of the script written for you, taking into account the interface’s
texture parameters. This script also includes the loading of previously opened Series and ROL.

The generated script can be reloaded into a new LIFEx session for automatic execution of texture
analysis.

- 514 Operations

Operations between { } are optional. If they are added, do not place the braces { } in the script.

e Texture protocol execution using global ROl and absolute discretization scheme:

template: LIFEx.Patient0.Series0.Operation0=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
Absolute,BinSize,NbGreyLevels, MinBound,MaxBound
{,xSpatialResampling,ySpatialResampling,zSpatialResampling}
{,filterName, ..., ...} (see: filters in "Available Series operations" section)

example1: LIFEx.Patient0.Series0.OperationO=Texture,true,false,false,1,3D,Absolute,0,64,0,20
Texture with KeepTheLargestCluster=true

and with check=false

and with isEnabledRoiUnion=false

and with DistanceWithNeighbours=1 and with DimensionProcessing=3D

and with Absolute discretization

and with BinSize=0

and with NbGreyLevels=64

and with MinBound=0

and with MaxBound=20

example2: LIFEx.Patient0.Series0.Operation0=Texture,true,false,false,1,3D,Absolute,0,64,0,20,2.5,2.5,2.5
Texture with KeepTheLargestCluster=true

and with check=false

and with isEnabledRoiUnion=false

and with DistanceWithNeighbours=1 and with DimensionProcessing=3D
and with Absolute discretization

and with BinSize=0

and with NbGreyLevels=64

and with MinBound=0

and with MaxBound=20

and with xSpatialResampling=2.5 mm

and with ySpatialResampling=2.5 mm

and with zSpatialResampling=2.5 mm

example3: LIFEx.Patient0.Series0.OperationO=Texture,true,false,false,1,3D,Absolute,0,64,0,20,2.5,2.5,2.5,
LaplacianOfGaussianFilter,2.000,2.000,2.000,3d,WholeBody,reflect
Texture with KeepTheLargestCluster=true

and with check=false

and with isEnabledRoiUnion=false

and with DistanceWithNeighbours=1 and with DimensionProcessing=3D
and with Absolute discretization

and with BinSize=0

and with NbGreyLevels=64

and with MinBound=0

and with MaxBound=20

and with xSpatialResampling=2.5 mm

39

5.1 Protocol TEXTURE operations

and with ySpatialResampling=2.5 mm
and with zSpatialResampling=2.5 mm
and with LaplacianOfGaussianFilter filter

e Execution with relative mean-standard deviation discretization strategy (global ROI):

template: LIFEx.Patient0.Series0.Operation0O=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
RelativeMeanSd,BinSize,NbGreyLevels, MinBound,MaxBound
{,xSpatialResampling,ySpatialResampling,zSpatialResampling}
{,filterName, ..., ...} (see: filters in "Available Series operations" section)

example: LIFEx.Patient0.Series0.Operation0O=Texture,true,false,false,1,3D,RelativeMeanSd,0,64
Texture with KeepTheLargestCluster=true, check=false, isEnabledRoiUnion=false

and with DistanceWithNeighbours=1

and with DimensionProcessing=3D

and with RelativeMeanSd discretization

and with BinSize=0

and with NbGreyLevels=64

e Execution with relative min-max discretization strategy (global ROI):

template: LIFEx.Patient0.Series0.OperationO=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
RelativeMinMax,BinSize,NbGreyLevels, MinBound,MaxBound
{,xSpatialResampling,ySpatialResampling,zSpatialResampling}
{,filterName, ..., ...} (see: filters in "Available Series operations" section)

example: LIFEx.Patient0.Series0.Operation0O=Texture,true,false,false,1,3D,RelativeMinMax,0,64
Texture with KeepTheLargestCluster=true, check=fasle, isEnabledRoiUnion=false

and with DistanceWithNeighbours=1

and with DimensionProcessing=3D

and with RelativeMinMax discretization

and with BinSize=0

and with NbGreyLevels=64

e TextureMap protocol enables voxel-wise feature extraction with kernel-based processing and
specified model (WholeBody, VoxelsOfRoi, BoundingBoxOfRoi) (local Map):

template: LIFEx.Patient0.Series0.Operation0O=TextureMap,KernelProcessing,MapModel,BinSize,NbGreyLevels,
MinBound,MaxBound

with KernelProcessing between 3||5||7

with MapModel between WholeBody/||VoxelsOfRoi||BoundingBoxOfRoi

Don't forget the ROI loading line if you're using MapModel VoxelsOfRoi||BoundingBoxOfRoi

example: LIFEx.Patient0.Series0.Operation0=TextureMap,3,WholeBody,0,64,0,20
TextureMap with KernelProcessing=3

and with MapModel=WholeBody

and with BinSize=0

40

5.2 MTV Protocol operations

and with NbGreyLevels=64
and with MinBound=0
and with MaxBound=20

W52) MTV Protocol operations
523D Introduction

MTV (Metabolic Tumor Volume) computation can be automated through scripts, chaining image and
ROl loading into consolidated .csv outputs.

- 522 Operations

e MTV protocol execution is invoked via the operation Mtv, KeepTheLargestCluster.: template:
LIFEx.Patient0.Series0.Operation0O=Mtv,KeepTheLargestCluster
example: LIFEx.Patient0.Series0.Operation0=Mtv,false

e KeepThelLargestCluster on MTV: defines whether only the largest cluster should be kept when
an ROI contains several clusters.
If the value of this key is true, then only the largest cluster is kept (the others are deleted during
the calculation).
If this value is false, then the ROI remains composed of several clusters if this is the case.
-> In the MTV protocol, we strongly recommend leaving this parameter at false, otherwise all
clusters will not be taken into account when calculating the MTV (this depends mainly on the
goal set).

- 523 Script example

This section shows a script example of MTV protocol.

You can copy/paste this script into a text file named script.txt (for example). Don'’t forget to change
some information: ex. directory/subDirectory

41

5.2 MTV Protocol operations

result file -> mandatory
LIFEx.Output.Directory={directory/subDirectory}

s
Patient0 / Series / ROI

HHHHHH A
loading series -> mandatory

LIFEx.Patient0.SeriesO={directory/subDirectory}/PTO
LIFEx.Patient0.Series0.Operation0O=Mtv,false

loading ROI -> mandatory
LIFEx.Patient0.Roi0={directory/subDirectory}/RoiVolume/R1.uint16.nii.gz
LIFEx.Patient0.Roi1={directory/subDirectory}/RoiVolume/R2.uint16.nii.gz

HEHHHH A
Patient 1 / Series
A
loading series -> mandatory

LIFEx.Patient1.SeriesO={directory/subDirectory}/PT1
LIFEx.Patient1.Series0.Operation0=Mtv,false

loading ROI -> mandatory
LIFEx.Patient1.Roi0={directory/subDirectory}/RoiVolume/R1.uint16.nii.gz
LIFEx.Patient1.Roi1={directory/subDirectory}/RoiVolume/R2.uint16.nii.gz

521D Output files

The root value of the key "LIFEx.Output.Directory” will be used for the construction of 2 files (2
files MTV_ROI and 2 files MTV_SUMMARY) will be saved at the end of the script execution by the
application:

e MTV_ROI_results.csv: will contain all the features extracted from each ROI;
e MTV_ROI_legend.csv: will contain the legend of all features extracted from each ROI
e MTV_SUMMARY _results.csv: will contain aggregated features calculated from several ROls.

e MTV_SUMMARY_legend.csv: will contain the legend of aggregated features calculated from
several ROls.

42

	I What is a script?
	 Introduction
	Rationale and what is a script?
	General information
	Script execution sequence
	How to run a script file
	Multi-scripts execution

	II General concepts
	 How to create?
	Write a script
	Script for getting started
	More complex script
	Main remarks
	Perform operations
	Perform common setting

	 Common properties
	US Properties

	 Series operations
	Syntax examples
	Script auto-completion with patient tree (v>=25.10.1)
	Script auto-completion with one series (v>=25.10.1)
	Script auto-completion with several series (v>=25.10.3)

	Series common operations
	Series operations

	 ROI operations
	Syntax examples
	ROI operations from threshold menu
	ROI operations from file/edit menu
	ROI operations from measure menu
	ROI operations from sort menu

	 Protocol operations
	Protocol TEXTURE operations
	Rationale
	Explanation of field contents
	Automatic texture script creation
	Operations

	MTV Protocol operations
	Introduction
	Operations
	Script example
	Output files

